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1Supercomputer Computations Research Institute, Florida State University, Tallahassee,
FL 32306-4130, USA

2 Department of Chemical Engineering, FAMU-FSU College of Engineering, Tallahassee,
FL 31310-6046, USA

(Received 20 January 2000 and in revised form 7 August 2000)

We study the flow induced by random vibration of a solid boundary in an otherwise
quiescent fluid. The analysis is motivated by experiments conducted under the low level
and random effective acceleration field that is typical of a microgravity environment.
When the boundary is planar and is being vibrated along its own plane, the variance
of the velocity field decays as a power law of distance away from the boundary. If a
low-frequency cut-off is introduced in the power spectrum of the boundary velocity,
the variance decays exponentially for distances larger than a Stokes layer thickness
based on the cut-off frequency. Vibration of a gently curved boundary results in
steady streaming in the ensemble average of the tangential velocity. Its amplitude
diverges logarithmically with distance away from the boundary, but asymptotes to a
constant value instead if a low-frequency cut-off is considered. This steady component
of the velocity is shown to depend logarithmically on the cut-off frequency. Finally, we
consider the case of a periodically modulated solid boundary that is being randomly
vibrated. We find steady streaming in the ensemble average of the first-order velocity,
with flow extending up to a characteristic distance of the order of the boundary
wavelength. The structure of the flow in the vicinity of the boundary depends strongly
on the correlation time of the boundary velocity.

1. Introduction
This paper examines the formation of viscous layers in a fluid which is in contact

with a solid boundary that is vibrated randomly. The analysis is motivated by the low
level and random acceleration field that affects a number of microgravity experiments.
We first study the case of a planar boundary to generalize the classical result of Stokes
(1851) who considered a boundary vibrated periodically along its own plane. We next
consider a slightly curved boundary, and show that steady streaming appears in the
ensemble average at first order in the perturbed flow variables. There are several
qualitative similarities and differences with the classical result by Schlichting (1932,
1979) for the case of periodic vibration. Finally, we address the case of a modulated
boundary that is vibrated randomly.

Our study is primarily motivated by the significant levels of random residual
accelerations (g-jitter) that have been detected during Space missions in which micro-
gravity experiments have been conducted (Walter 1987; Nelson 1991; DeLombard
et al. 1997). A better understanding of the response of a fluid to such disturbances
would enable improved experiment design to minimize or compensate for their in-
fluence. We choose to focus here on the formation of viscous layers around solid
boundaries when the flow amplitude has a random component. Potential micrograv-
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ity applications include the dynamics of colloidal suspensions, coarsening studies of
solid–liquid mixtures in which purely diffusive-controlled transport is desired, or the
interaction between the viscous layer produced by bulk flow of random amplitude
and the morphological instability of a crystal–melt interface. Our study represents
the first step in this direction, and focuses on simple geometries in order to elucidate
those salient features of the flow that arise from the random nature of the vibration.

Previous theoretical work on the influence of g-jitter on fluid flow ranges from
order of magnitude estimates to detailed numerical calculations (Alexander 1990).
The bulk of the research to date models the acceleration field by some simple analytic
function in which the acceleration is typically decomposed into steady and time-
dependent components, the latter being periodic in time (Gershuni & Zhukhovitskii
1976; Kamotani, Prasad & Ostrach 1981; Alexander, Ouazzani & Rosenberger 1991;
Farooq & Homsy 1994; Grassia & Homsy 1998a, b; Gershuni & Lyubimov 1998). A
few studies have also addressed the consequences of isolated pulses of short duration
(Alexander et al. 1997). On the other hand, we follow the approach of Zhang,
Casademunt & Viñals (1993) and Thomson et al. (1997) who adopted a statistical
description of the residual acceleration field onboard spacecraft, and modelled the
acceleration time series as a stochastic process in time. The main premise of this
approach is that a statistical description is necessary in those cases in which the
characteristic time scales of the physical process under investigation are long compared
with the correlation time of g-jitter. The particular stochastic process used is narrow-
band noise (Stratonovich 1967) which has been shown to describe reasonably well
many of the features of g-jitter time series measured onboard Space Shuttle by
Thomson et al. (1997). A theoretical advantage of narrow-band noise is that it
provides a convenient way of interpolating between monochromatic noise (akin to
studies involving a deterministic and periodic gravitational field), and white noise (in
which no frequency component is preferred).

We discuss in this paper the flow induced in an otherwise quiescent fluid by the
random vibration of a solid boundary. The velocity of the boundary u0(t) is assumed
prescribed, and modelled as a narrow-band stochastic process. First, we consider an
infinite planar boundary that is being vibrated along its own plane to generalize the
classical problem studied by Stokes (1851). In the monochromatic limit, the variance
of the velocity field decays exponentially away from the wall, with a characteristic
decay length given by the Stokes layer thickness δs = (2ν/Ω)1/2, where ν is the
kinematic viscosity of the fluid, and Ω is the angular frequency of vibration of the
boundary. Since the equations governing the flow are linear, we are able to obtain an
analytic solution describing transient layer formation in the stochastic case, but only
in the neighbourhood of the white and monochromatic noise limits. We then show
that for any finite correlation time the stationary variance of the tangential velocity
asymptotically decays as the inverse squared distance from the wall, in contrast with
the exponential decay in the deterministic case. This asymptotic behaviour originates
from the low-frequency range of the power spectrum of the boundary velocity. The
crossover from power-law to exponential decay is explicitly computed by introducing
a low-frequency cut-off in the power spectrum.

We next investigate two additional geometries in which the equations governing
fluid flow are not linear, and show that several of the generic features obtained for
the case of a planar boundary still hold. In the first case, we generalize the analysis
of Schlichting (1932, 1979) concerning secondary steady streaming. He found that
the oscillatory motion of the boundary induces a steady secondary flow outside the
viscous boundary layer even when the velocity of the boundary averages to zero. If
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the thickness of the Stokes layer, δs, and the amplitude of oscillation, a, are small
compared with a characteristic length scale of the boundary L (δs � L, a� L), then
the generation of secondary steady streaming may be described as follows. Vibration
of the rigid boundary gives rise to an oscillatory and non-uniform motion of the
fluid. The flow is potential in the bulk, and rotational in the boundary layer because
of no-slip conditions on the boundary. The bulk flow applies pressure at the outer
edge of boundary layer, which does not vary across the layer. The non-uniformity of
the flow leads to vorticity convection in the boundary layer through nonlinear terms.
Both convection and the applied pressure drive vorticity diffusion, and thus induce
secondary steady motion which does not vanish outside the boundary layer. In the
simplest case in which the far-field velocity is a standing wave U(x, t) = U(x) cos (Ωt),
the tangential component of the secondary steady velocity is

u(s) = − 3

4Ω
U

dU

dx
, (1.1)

where x is a curvilinear coordinate along the boundary. In fact, (1.1) serves as the
boundary condition for the stationary part of the flow in the bulk. Similar conclusions
were later reached by Batchelor (1967) who studied sinusoidal oscillations of non-
uniform phase, and by Gershuni & Lyubimov (1998) who studied monochromatic
oscillations of a general form.

The second geometry that we address is the so-called wavy wall (Lyne 1971). The
deterministic limit in which a wavy boundary is being periodically vibrated has been
studied by a number of authors, mainly to address the interaction between the flow
above the sea bed and ripple patterns on it (Lyne 1971; Kaneko & Honjii 1979;
Vittori 1989; Blondeaux & Vittori 1994 and references therein). Lyne (1971) deduced
the existence of steady streaming in the limit in which the amplitude of the wall
deviation from planarity is small compared with the thickness of the Stokes layer. He
introduced a conformal transformation and obtained an explicit solution in the limit
of small kRe, where k is the wavenumber of the wall profile scaled by the thickness
of the Stokes layer, and Re is the Reynolds number. The detailed structure of the
secondary flow depends on the ratio between the wavelength of the boundary profile
and the thickness of the Stokes layer.

In §§ 3 and 4, we discuss how the results for these two geometries generalize to
the case of stochastic vibration. Section 3 addresses the flow created by a gently
curved solid boundary that is being vibrated randomly. The perturbation parameter
that we use is the ratio between the amplitude of vibration and the characteristic
inverse curvature of the wall. The ensemble average of the stream function is not
zero, and hence there exists stationary streaming in the stochastic case as well. The
average velocity diverges logarithmically away from the boundary because of the
low-frequency range of the power spectrum. We again introduce a low-frequency
cut-off ωc in the spectrum, and study the dependence of the stationary streaming on
the cut-off frequency. We compute the stationary tangential velocity as a function of
ωc � 1 and arbitrary β, and find a weak (logarithmic) singularity as ωc → 0.

Section 4 discusses the formation of a boundary layer around a wavy boundary that
is vibrated randomly. Positive and negative vorticity production in adjacent regions
of the boundary introduces a natural decay length in the solution, thus leading to
exponential decay of the flow away from the boundary, even in the absence of a low-
frequency cut-off in the power spectrum of the boundary velocity. Steady streaming
is found at second order comprising two or four recirculating cells per period of the
boundary profile. The number of cells depends on the scaled correlation time Ωτ.
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2. Randomly vibrating planar boundary
We first examine the case of a planar boundary that is being vibrated along a

fixed direction on its own plane. In this case the governing equations are considerably
simpler than in the more general geometries discussed in §§ 3 and 4. In particular,
the Navier–Stokes equation is linear, a fact that allows a complete solution of
the flow. Nevertheless, this simple solution still exhibits several of the qualitative
features that are present in the case of random forcing by a curved boundary,
namely asymptotic power law decay of the velocity field away from the boundary,
and sensitive dependence on the low-frequency range of the power spectrum of the
boundary velocity.

Consider an infinite solid boundary located at z = 0, and an incompressible
and viscous fluid that occupies the region z > 0. The Navier–Stokes equation, and
boundary conditions are

∂tu = ν∂2
zu, (2.1)

u(0, t) = u0(t), u(∞, t) < ∞, (2.2)

where z is the coordinate normal to the boundary, u(z, t) is the x component of
the velocity, and u0(t) is the prescribed velocity of the boundary. The solution for
harmonic vibration u0(t) = u0 cos (Ωt) was given by Stokes (1851). It is a transversal
wave that propagates into the bulk fluid with an exponentially decaying amplitude,

u(z, t) = u0e
−z/δs cos (Ωt− z/δs), (2.3)

where δs = (2ν/Ω)1/2 is the Stokes layer thickness.

2.1. Narrow-band noise

As discussed in the introduction, the main topic of this paper is to examine how
the nature of the bulk flow changes when the boundary velocity u0(t) is a random
process. Specifically, we consider a Gaussian process defined by

〈u0(t)〉 = 0, 〈u0(t)u0(t
′)〉 =

〈
u2

0

〉
e−|t−t

′ |/τ cosΩ(t− t′). (2.4)

This process is known as narrow-band noise (Stratonovich 1967). It is defined by
three independent parameters: its variance

〈
u2

0

〉
, its dominant angular frequency Ω,

and the correlation time τ. Each realization of this random process can be viewed as
a sequence periodic functions of frequency Ω, with amplitude and phase that remain
constant for a time interval τ on average. White noise is recovered when Ωτ→ 0 while
D =

〈
u0

2
〉
τ remains finite, whereas the monochromatic noise limit corresponds to

Ωτ→∞, with
〈
u2

0

〉
finite. Monochromatic noise is akin to a single-frequency periodic

signal of the same frequency, but with randomly drawn amplitude and phase. The
relationship between the two can be illustrated by considering a deterministic function
x(t) = x0 cos (Ωt) and defining the temporal average as

〈x(t)x(t′)〉 = lim
T→∞

1

T

∫ T

0

dt x(t)x(t′) =
x2

0

2
cos (Ω(t− t′)). (2.5)

This average coincides with the ensemble average of the noise when
〈
u2

0

〉
= x2

0/2. The
power spectrum corresponding to the correlation function (2.4) is

P (ω) =

〈
u2

0

〉
2π

[
τ

1 + τ2(ω − Ω)2
+

τ

1 + τ2(ω + Ω)2

]
. (2.6)
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We will also use the spectral density of the process u0(t),

û0(ω) =
1

2π

∫ ∞
−∞

dt u0(t)e
−iωt, (2.7)

so that its ensemble average and correlation function are respectively given by

〈û0(ω)〉 = 0, 〈û0(ω)û∗0(ω
′)〉 = δ(ω − ω′)P (ω), (2.8a,b)

and ∗ denotes complex conjugation. We will often use dimensionless variables in which〈
u2

0

〉
/Ω is the scale of P (ω), and Ω is the angular frequency scale. In dimensionless

form,

P (ω, β) =
1

2π

[
β

1 + β2(ω − 1)2
+

β

1 + β2(ω + 1)2

]
, (2.9)

where β = Ωτ. We have
∫ ∞
−∞ dωP (ω, β) = 1, independent of β, and also limβ→∞ P (ω) =

[δ(ω − 1) + δ(ω + 1)] /2. Note that the power spectrum does not vanish at small
frequencies. Instead, P (0, β) = β/π(1 + β2), which for large and small β behaves as
P (0, β) ∼ 1/πβ and P (0, β) ∼ β/π respectively. We will discuss separately the effect
of this low-frequency contribution on the results presented in the remainder of the
paper.

2.2. Stationary variance for narrow-band noise

While it is possible to obtain a closed analytic solution for the transient evolution of
the variance

〈
u(z, t)2

〉
when the vibration of the boundary is either monochromatic

or white noise (see Appendix A), this is not the case when u0(t) is given by a general
narrow-band process. It is possible, however, to obtain the stationary variance of the

velocity. First, choose 1/Ω as the time scale,
(
ν/Ω

)1/2
as the length scale, and (

〈
u2

0

〉
)1/2

as the velocity scale. Then, (2.1) can be rewritten in Fourier space as

iωû(z, ω) = ∂2
z û(z, ω) (2.10)

with

u(z, t) =

∫ ∞
−∞

dω û(z, ω)eiωt. (2.11)

The boundary conditions are, û(0, ω) = û0(ω), and û(z, ω) < ∞ at z →∞. The solution
of (2.10) with these boundary conditions is

û(z, ω) = e−αzû0(ω), α(ω) = (1 + i sign(ω))(|ω|/2)1/2. (2.12)

After some straightforward algebra we find〈
u2(z, β)

〉
2

= I(z, β) =

∫ ∞
0

dωP (ω, β) exp (−z(2ω)1/2). (2.13)

We have also used the fact that the power spectrum (2.9) is even in frequency.
We next analyse the asymptotic dependence of I(z, β) at large z. In this limit, I(z, β)

mainly depends on the low-frequency region of the power spectrum; higher frequencies
are suppressed by the exponential factor. By using Watson’s lemma (Nayfeh 1981),
we find

I(z, β) =
β

π(1 + β2)

1

z2
+

30β3(3β2 − 1)

π(1 + β2)3

1

z6
+ O(z−10). (2.14)

This asymptotic form at large z is valid for all β. In particular, the dominant behaviour
for small and large β is I(z, β) ∼ β/πz2 and I(z, β) ∼ 1/πβz2 respectively.
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Figure 1. Normalized variance of the tangential velocity for the case of a planar boundary computed
by numerical integration of (2.13) (symbols), and its uniform asymptotic expansion, (2.15), (solid
lines). The function I(z, β) z2 asymptotes to a constant value outside the classical Stokes layer based
on Ω. The uniform expansion remains a good approximation even for moderate β.

We can also find the asymptotic behaviour at large β that is uniformly valid in z,

I(z, β) =
e−ξ

2
− ξ

2πβ

(
Ci(ξ) sin(ξ)− Si(ξ) cos (ξ)− 1

2
(e−ξEi(ξ)− eξEi(−ξ))

)
+ O(β−3),

(2.15)
where ξ =

√
2z, Ci and Si denote the integral sine and cosine functions, and Ei stands

for the exponential integral function (Gradshteyn & Ryzhik 1980). For z . 1, the
variance decreases exponentially. At larger z, the exponential terms in (2.15) become
small, so that the remaining asymptotic dependence for large z is given by (2.14). The
quantity I(z, β) z2 computed both from (2.13) and the uniform expansion (2.15) is
presented in figure 1. For fixed β, I(z, β) asymptotes to β/π(1 +β2) outside the Stokes
layer. This value is the coefficient of the leading term in the asymptotic expansion
(2.14). The expansion (2.15) is a good approximation even for moderate values of β.

To summarize, the variance of the velocity field does not decay exponentially away
from the wall for finite β, but rather as the inverse squared distance. The crossover
length separating exponential and power law decay increases with increasing β.

2.3. Low-frequency cut-off in the power spectrum

The coefficient of the leading term in (2.14) is in fact the value of P (0, β) = β/π(1+β2).
The algebraic decay of

〈
u2(z, β)

〉
follows from the diffusive nature of (2.1), and a

non vanishing value of P (ω, β) as β → 0. Before we analyse in §§ 3 and 4 how
this behaviour is modified by nonlinearities in the governing equations, we explicitly
address here the consequences of a low-frequency cut-off in the power spectrum.
Of course, there always exists in practice a low-frequency cut-off because of limited
observation time. Furthermore, the low-frequency range of the power spectrum of
the residual acceleration field in microgravity (Ω/2π < 10−3Hz) is fairly difficult to
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measure reliably. We therefore introduce an effective cut-off frequency in the power
spectrum, ωc � 1, and study the dependence of

〈
u2(z, β)

〉
on ωc. The stationary value

of variance of the velocity is now given by〈
u2(z, β, ωc)

〉
2

= Ic(z, β, ωc) =

∫ ∞
ωc

dωP (ω, β) exp (−z(2ω)1/2). (2.16)

By using Watson’s lemma, we find for large z

Ic(z, β, ωc) =
β exp (−z(2ωc)1/2)

π(1 + β2)

(
1

z2
+

(2ωc)
1/2

z
+ h.o.t.

)
, (2.17)

where h.o.t. stands for terms which are of higher order than terms retained under
the assumption that both 1/z and (2ωc)

1/2 are small but independent. For z � 1, but
z(2ωc)

1/2 � 1 the dominant term in (2.17) is

Ic(z, β, ωc) ∼ β

π(1 + β2)

1

z2
, z(2ωc)

1/2 � 1. (2.18)

On the other hand, if z(2ωc)
1/2 > 1, the leading-order term is now a function of

ζ = z(2ωc)
1/2

Ic(z, β, ωc) ∼ 2βωc e−ζ

π(1 + β2)

(
1

ζ
+

1

ζ2

)
, ζ > 1. (2.19)

Equations (2.18) and (2.19) show that at distances that are large compared with the
thickness of the Stokes layer based on the dominant frequency Ω,

〈
u2(z, β)

〉
decays

algebraically with z. There exists, however, a length scale z ∼ O((2ωc)
−1/2) beyond

which the decay is exponential. This new characteristic length scale is the thickness
of the Stokes layer based on the cut-off frequency. This conclusion appears natural
given the principle of superposition for the linear differential equation (2.1).

We next address a specific functional form of the power spectrum at low frequencies
that allows us to estimate analytically the resulting asymptotic dependence of the
velocity variance.† Consider a power spectrum that at low frequencies is proportional
to a power of the frequency

P (ω) ∼ A|ω|γ, |ω| � 1, (2.20)

where A is a constant (narrow-band noise is the special case of γ = 0). Given
this asymptotic form of the power spectrum, Watson’s lemma gives the following
asymptotics for the variance:

I(z) ∼ Γ(2γ + 2)

2γ
A

z2γ+2
, z � 1,

where Γ(x) is the standard Gamma function. The variance of the velocity field still
decays as a power law of the distance away from the boundary as long as γ > −1,
with an exponent that depends explicitly on γ. For γ = −1, the power spectrum
diverges as ω−1 at small frequencies and the variance of the velocity field saturates
to a constant.

From our analysis of the planar boundary in this Section, we conclude that the
asymptotic behaviour of the velocity variance can be exponential or a power law
depending on the low-frequency range of the power spectrum. As we show later in
this paper, the asymptotic decay obtained in this case is crucial in determining the

† We are indebted to an anonymous reviewer for this suggestion.
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structure of the secondary stationary flows that appear when nonlinear terms are
incorporated into the analysis.

3. Streaming due to random vibration
Next we investigate to what extent the results of § 2 hold in configurations in

which the governing equations are not linear. We examine in this section the flow
induced by a gently curved solid boundary that is being randomly vibrated. The
boundary velocity is assumed to be described by a narrow-band stochastic process,
and hence our results will reduce to Schlichting’s in the limit of infinite correlation
time. However, for finite values of β the results are qualitatively different. Vorticity
produced at the vibrating boundary penetrates into the bulk fluid already at zeroth
order. Depending on the low-frequency range of the power spectrum of the boundary
velocity, this may result in a logarithmic divergence of the ensemble average of the
first-order velocity with distance away from the wall.

Define the following dimensionless quantities:

z = z̃[(ν/Ω)1/2], x = x̃[L], t = t̃[Ω−1], ψ = ψ̃[(2
〈
u2

0

〉
ν/Ω)1/2],

ε = (2
〈
u2

0

〉
)1/2/ΩL, Re2 = 2

〈
u2

0

〉
/Ων, ∆̃ = ∂2

z̃ + ε2/Re2∂2
x̃

 (3.1)

Assume now that the characteristic linear scale of the boundary L is large so that ε is
a small quantity. If the Reynolds number Re remains finite, then we have ν/ΩL2 � 1.
We next write the governing equations and boundary conditions in the frame of
reference co-moving with the solid boundary and obtain for a two-dimensional
geometry (tildes are omitted)

∂t∆ψ + ε
∂(ψ,∆ψ)

∂(z, x)
= ∆2ψ, (3.2)

ψ = 0, ∂zψ = 0 at y = 0, (3.3a,b)

∂zψ = 2−1/2U(x)u0(t) at z = ∞, (3.4)

where x, z are the tangential and normal coordinates along the boundary, and ψ is
the stream function, u = (∂zψ,−∂xψ). We have also used the notation ∂(a, b)/∂(z, x) =
(∂za)(∂xb) − (∂xa)(∂zb) for the nonlinear term. The far-field boundary condition is

a non-uniform and random velocity field, of the order of
〈
u2

0

〉1/2
, with a spatially

non-uniform amplitude U(x), and a stochastic modulation u0(t) which is a Gaussian
stochastic process with zero mean, and narrow-band power spectrum. We first expand
the stream function as a power series of ε, ψ = ψ0 + εψ1 + . . . and solve (3.2) order
by order.

At order ε0 we obtain the following equation:

(∂t∂
2
z − ∂4

z )ψ0 = 0 (3.5)

with boundary conditions

ψ0 = 0, ∂zψ = 0 at z = 0, (3.6a,b)

∂zψ = 2−1/2U(x)u0(t) at z = ∞. (3.7)

At this order, the equations effectively describe the flow induced above a planar
boundary with a far-field velocity boundary condition that is not uniform. The
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solution can be found by Fourier transformation. We define

ψ0(x, z, t) =

∫ ∞
−∞

dω ψ̂0(x, z, ω)eiωt. (3.8)

The transformed (3.5) and the transformed boundary conditions (3.6a,b) allow sepa-
ration of variables. We define

ψ̂0(x, z, ω) = 2−1/2U(x)û0(ω)ζ̂0(z, ω),

so that (3.5) leads to

(iω∂2
z − ∂4

z )ζ̂0 = 0, (3.9)

with boundary conditions ζ̂0 = 0, ∂zζ̂0 = 0, at z = 0 and ∂zζ̂0 = 1 at z = ∞. The
solution is

ζ̂0(z, ω) = −1/α+ z + 1/αe−αz, α(ω) = (1 + i sign(ω))(|ω|/2)1/2). (3.10)

At order ε we find

(∂t∂
2
z − ∂4

z )ψ1 = ∂xψ0∂
3
zψ0 − ∂zψ0∂x∂

2
zψ0 (3.11)

with boundary conditions ψ1 = 0, ∂zψ1 = 0 at z = 0. The remaining boundary condi-
tion for ψ1 needs to be discussed separately. Consider first the classical deterministic
limit which can be formally obtained by setting β = ∞. Then, the right-hand side of
(3.11) involves stationary terms (of zero frequency), and sinusoidal terms with twice
the frequency of the far-field flow. Since the equation is linear, the solution ψ1 has
exactly the same temporal behaviour. In this case, it is known that it is not possible
to find a solution for ∂zψ1 that vanishes at large z, but only one that simply remains
bounded as z → ∞. By analogy, we introduce a similar requirement in the stochastic
case of β < ∞. Since the zeroth-order stream function diverges linearly, this condition
simply amounts to requiring that the expansion in powers of ε remains consistent.

We now take the ensemble average of (3.11), and consider the long-time stationary
limit of the average (ψ(s)

1 = limt→∞ 〈ψ1〉), to find

∂4
zψ

(s)
1 =

〈
∂zψ0∂x∂

2
zψ0 − ∂xψ0∂

3
zψ0

〉
. (3.12)

This equation can be integrated from infinity to z. We obtain

∂3
zψ

(s)
1 =

U

2

dU

dx
F(z, β), (3.13)

where

F(z, β) =

∫ ∞
0

dωP (ω, β)Q(ω, z),

and

Q(ω, z) = (−2 + 2∂zζ̂0∂zζ̂
∗
0 − ζ̂0∂

2
z ζ̂
∗
0 − ζ̂∗0∂2

z ζ̂0).

The power spectrum P (ω, β) is defined in (2.9). The constant that appears in the
expression for Q(ω, z) comes from the pressure gradient imposed at infinity.

We now proceed to solve (3.13) subject to the boundary conditions ψ(s)
1 = ∂zψ

(s)
1 = 0

on the solid boundary, and ∂2
zψ

(s)
1 → 0 as z → ∞. This is a boundary value problem

for ψ(s)
1 which, in the limit β → ∞, can be solved analytically. The result obtained by

Schlichting is recovered, namely that the solution may be bounded at infinity simply
by setting the divergent component of the homogeneous part of the solution equal



396 D. Volfson and J. Viñals

to zero to satisfy the principle of minimal singularity (Van Dyke 1964). Otherwise
∂zψ

(s)
1 is singular a fortiori. Since we cannot find an complete analytic solution for

finite β, we proceed as follows. We recast the boundary value problem as an initial
value problem, and search for a boundary condition on ∂2

zψ
(s)
1 at z = 0 so that the

homogeneous part of the solution remains bounded. This boundary condition can be
found analytically by integrating (3.13) from 0 to z. We find

∂2
zψ

(s)
1 (z)− ∂2

zψ
(s)
1 (0) =

U

2

dU

dx

∫ z

0

dz′
∫ ∞

0

dωP (ω, β)Q(ω, z′),

or after changing the order of integration,

∂2
zψ

(s)
1 (z)− ∂2

zψ
(s)
1 (0) =

U

2

dU

dx

∫ ∞
0

dωP (ω, β)

[∫ z

dz′Q(ω, z′)−
(∫ z

dz′Q(ω, z′)
)
z=0

]
.

The second integral within brackets equals (2/ω)1/2. In order to avoid a linear

divergence of ∂zψ
(s)
1 (z) we equate the constant terms on both sides, thus obtaining the

third initial condition

∂2
zψ

(s)
1 (0, β) = U

dU

dx

21/2

2

∫ ∞
0

dωω−1/2P (ω, β)

= U
dU

dx

(2β)1/2

4q
((2(q − β))1/2 + (q + 1)1/2 + (q − 1)1/2), (3.14)

where q = (1+β2)1/2, and the dependence of initial condition on β is shown explicitly.
Equation (3.13) with its original boundary conditions, supplemented with (3.14) is an
initial value problem, which we have solved numerically.

Before presenting the numerical results, we study the asymptotic behaviour of the
solution for large z which is determined by the asymptotic form of F(z, β) at large z.
By explicit substitution of the zeroth-order solution we find

Q(z, ω) = (−4 cos (Z)− 2Z(cos (Z) + sin (Z )) + 2 sin (Z))e−Z + 2e−2Z , (3.15)

where Z = z(ω/2)1/2. The leading contribution to F(z, β) as z →∞ originates from the
zero-frequency limit of P (ω, β). Thus F(z, β) ∼ P (0, β)

∫ ∞
0

dωQ(ω, z). The remaining
integral may be easily calculated to yield the asymptotic form

F(z, β) ∼ 6β

π(1 + β2)

1

z2
. (3.16)

Therefore the stationary mean first-order velocity u
(s)
1 = ∂zψ

(s)
1 has a logarithmic

asymptotic form (see (3.13)).
We have numerically calculated ∂zψ

(s)
1 (z) for a range of values of β. The results

are presented in figure 2. Equation (3.13) was integrated numerically with no-slip
boundary conditions for ψ(s)

1 , and (3.14). The numerical results support our conclusion

about the logarithmic divergence of u(s)
1 with distance for any finite β. As β increases

the stationary mean velocity profile approaches a limiting form that corresponds to
the monochromatic limit of β → ∞. In this limit we recover the Schlichting result,
according to which ∂zψ

(s)
1 (z) asymptotes to a constant value over a distance of the

order of the deterministic Stokes layer.
It is however important to discuss at this point the range of validity of our

solution. At O(ε), ∆̃ ' ∂2
z̃ , independent of the second derivative along the tangential

coordinate, and hence of the curvature of the boundary. At this order we find that
u

(s)
1 is proportional to ln z. At distances z ∼ L, second derivatives along the tangential
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Figure 2. Stationary first-order velocity as a function of distance for a range of values of β. All
curves diverge logarithmically at large z, except for β = ∞ (monochromatic limit), in which case
the velocity asymptotes to a constant within the Stokes layer. This latter behaviour reproduces the
classical result of Schlichting.

direction will no longer be negligible compared to normal derivatives, and our O(ε)
calculation breaks down. We expect that at the next order in ε the logarithmic
divergence beyond distances z ∼ L will be suppressed. This is analogous to our
numerical result in § 4 concerning the vibration of a wavy wall when the wavelength
of the boundary is much larger than the Stokes layer thickness. There we find an
intermediate region in which the tangential velocity grows logarithmically with z,
crossing over to exponential decay for distances larger than the wavelength.

Finally, we expect that our results hold when the weakly curved solid boundary
considered in our analysis has a non-zero normal component of the velocity. This
component would only enter the determination of the outer flow, which we do not
need to compute. Hence the perturbation expansion remains essentially unchanged.

3.1. Low-frequency cut-off in the power spectrum

In § 2, we showed that a low-frequency cut-off in P (ω, β) led to an exponential decay
of the velocity outside an effective boundary layer of thickness determined by the
cut-off frequency. We therefore examine here the consequences of a low-frequency
cut-off on the divergent behaviour of the stationary average of the first-order stream
function. In order to find the asymptotic form of ∂zψ

(s)
1 , we first integrate (3.13) twice.

By using the low-frequency cut-off defined in § 2.3, we write

∂zψ
(s)
1 (z, β, ωc) =

U

2

dU

dx
[Gc(z, β, ωc)− Gc(0, β, ωc)] , (3.17)

with,

Gc(z, β, ωc) =

∫ z

dz′
∫ z′

∞
dz′′Fc(z′′, β, ωc),
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Figure 3. Stationary first-order velocity as a function of distance for a range of values of β. The
power spectrum of the boundary velocity has a low-frequency cut-off at ωc = 0.05. The velocity
asymptotes to a constant that depends on the value of β.

and,

Fc(z, β, ωc) =

∫ ∞
ωc

dωP (ω, β)Q(ω, z).

If we set ωc = 0 and consider the monochromatic limit of β → ∞, we find that
Gc(z,∞, 0) contains an exponential factor that vanishes at z ∼ O(1), and that
Gc(0,∞, 0) = 3/2. Therefore the Schlichting result is recovered. An explicit form
of Gc(z, β, ωc) for any β and ωc can be obtained analytically, but it is far too com-
plicated and we do not quote it here. Figure 3 shows our result for u(s)

1 (z) for fixed
ωc and a range of values of β. Its functional dependence is similar to that given for

the planar boundary, and contains exponential terms involving (−zω1/2
c ). It is also of

interest to find the asymptotic value of the velocity away from the boundary. We find
that ∂zψ

(s)
1 (∞, β, ωc) = −(UdU/2dx)Gc(0, β, ωc). For finite but small ωc, we obtain

∂zψ
(s)
1 (∞, β, ωc) = −3

4
U

dU

dx

β

π(1 + β2)

(
2β arctan(β)− ln

(
β2ω2

c

1 + β2

))
+O(ω2

c ). (3.18)

The analytic and numerical values of the tangential mean stationary velocity at large
distances as a function of the cut-off frequency are given in figure 4. Computations
were done as described in the previous section, and for different values of ωc � 1 and
β. In all cases ∂zψ

(s)
1 reached constant values at large enough z (the numerical value

of infinity, z∞, was chosen so that the change in velocity for z > z∞ was less than
a prescribed tolerance). We also checked that any change in the boundary condition
(3.14) leads to a linear divergence in the tangential mean stationary velocity, thus
confirming the adequacy of this boundary condition. The figure also shows that the
computed values of ∂zψ

(s)
1 (z = ∞, β, ωc) for small ωc are in a good agreement with

(3.18).
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Figure 4. Asymptotic dependence of the stationary velocity on the cut-off frequency ωc. We show
the case β = 10 given by (3.18) along with the numerically obtained solution.

In summary, (3.18) shows that the tangential velocity away from the boundary
asymptotes to a constant that is a function of β, and has a weak (logarithmic)
dependence on the cut-off frequency ωc. Therefore the asymptotic dependence in the
stochastic case (with a cut-off) and in the deterministic case are qualitatively similar,
although the value of the asymptotic velocity of the former depends on β. Note also
that this asymptotic behaviour only sets in for distances larger than (ν/ωcΩ)1/2, a
value that can be quite large in practical microgravity conditions.

Finally we explore the large-z asymptotics for a power spectrum of the form (2.20).
According to the results of § 2.3, the asymptotic dependence of the variance of the
velocity field in the planar boundary case is identical to that of the body force F(z, β)
in (3.13). Therefore, at large distances

∂3
zψ

(s)
1 ∼ U

2

dU

dx

Ã

z2γ+2
,

where Ã is a constant. At fixed x, the resulting tangential velocity for γ > 0 is

∂zψ
(s)
1 ∼ U

2

dU

dx

(
−a+

b

z2γ

)
,

where a = 3
∫ ∞

0
dωω−1P (ω) > 0 and b = Ã/2γ(2γ+ 1) are constants, and logarithmic

for γ = 0. This power-law decay is also to be interpreted as intermediate asymptotics,
valid for distances smaller than the characteristic linear scale of the boundary.

4. Randomly vibrating wavy boundary
In the two previous sections we considered cases in which the characteristic linear

scale of the solid boundary was either infinite or large compared with the Stokes
layer thickness, based on the dominant frequency. We examine here the case of a
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wavy boundary and study how comparable length scales in both directions influence
the flow away from the boundary. In contrast with the Schlichting problem, the
external applied flow is now uniform or, alternatively, the length scale over which the
flow is not uniform is much larger than the wavelength of the boundary. Thus one
anticipates that the normal component of the flow that appears is caused by the wall
profile. This flow interacts through nonlinear terms with the externally forced flow
that is parallel to the average profile of the boundary and gives rise to stationary
streaming. Even for stochastic vibration we show that positive and negative vorticity
production in adjacent regions of the boundary introduces a natural decay length in
the zeroth-order solution, thus leading to exponential decay of the flow away from
the boundary, even in the absence of a low-frequency cut-off in the power spectrum
of the boundary velocity.

Consider a rigid wavy wall being washed by a uniform oscillatory flow parallel to
the wall wave vector,

u(x, z = ∞) = (u0(t), 0). (4.1)

We now assume that u0(t) is a narrow-band Gaussian process. Assume also that the
amplitude of the boundary modulation l is small compared with both the Stokes layer
δs and the wavelength L, with δs/L finite. The following dimensionless quantities are
introduced:

z = z̃[(ν/Ω)1/2], x = x̃[(ν/Ω)1/2], t = t̃[Ω−1], ψ = ψ̃[(2
〈
u2

0

〉
ν/Ω)1/2],

ε = l/(ν/Ω)1/2, Re =
[
2
〈
u2

0

〉
/Ων

]1/2
, k = 2π(ν/Ω)1/2/L, ∆̃ = ∂2

z̃ + ∂2
x̃

 (4.2)

referred to the Cartesian coordinate system sketched in figure 5. The solid boundary
is located at

εη(x) = ε(η̂ eikx + c.c.) (4.3)

with constant complex amplitude η̂ so that |η̂| = 1/2. The dimensionless (and two-
dimensional) Navier–Stokes equation (tildes are omitted in what follows) reads

∂t∆ψ + Re
∂(ψ,∆ψ)

∂(z, x)
= ∆2ψ, (4.4)

with no-slip conditions at the boundary,

ψ = 0, ∂zψ = 0 at y = εη(x), (4.5a,b)

and the imposed uniform flow at infinity,

∂xψ = 0, ∂zψ = 2−1/2u0(t) at z = ∞. (4.6a,b)

These equations depend only on three dimensionless parameters: ε, the ratio of the
amplitude of the wavy wall to the boundary layer width, Re the Reynolds number,
representing the ratio of the amplitude of boundary oscillations to the Stokes layer
thickness, and k the wavenumber of the wall profile in units of boundary layer width.
We assume ε� 1 and expand the stream function in a power series of ε,

ψ = ψ0 + εψ1 + . . . . (4.7)

The boundary conditions are likewise expanded in power series of ε,

ψ(z)|z=η = ψ0(z)|z=0 + ε(ψ1(z)|z=0 + η∂zψ0(z)|z=0) + . . . . (4.8)

We now solve (4.4) order by order in ε.
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Figure 5. Schematic view of the geometry of the wavy wall studied in § 4.

At zeroth order the wall is effectively planar. We decompose the Fourier transform

of the stream function as, ψ̂0(x, z, ω) = 2−1/2û0(ω)ζ̂0(z, ω). The function ζ̂0(z, ω) is
given in (3.10). At this order, the solution is identical to that found for a planar
boundary.

At first order we seek a solution of the form

ψ1 = η̂ exp(ikx)φ(z, t) + c.c. (4.9)

so that the amplitude φ(z, t) satisfies the Orr–Sommerfeld equation (see Blondeaux &
Vittori 1994),

(∂tD−D2)φ = ikRe(∂3
zψ0 − ∂zψ0D)φ, D = ∂2

z − k2, (4.10)

with non-homogeneous boundary conditions,

φ = 0, ∂zφ = −∂2
zψ0 at z = 0, (4.11a,b)

φ = 0, ∂zφ = 0 at z = ∞, (4.12a,b)

The linear operator on the left-hand side of (4.10) contains a significant difference
with respect to that of (3.11), the equation governing the first-order stream function
for the case of a slightly curved boundary. Both equations describe vorticity diffusion,
but the biharmonic equation (4.10) contains a cut-off through the parameter k. It is
precisely this term that will lead to an asymptotic exponential decay of the velocity
field sufficiently far away from the boundary for any finite β. The exponential decay
at long distances arises from the screening introduced by the simultaneous positive
and negative vorticity produced at the troughs and crests of the wavy wall.

In order to obtain a solution of the Orr–Sommerfeld equation (4.10), we further
expand the amplitude φ(z, t) in power series of kRe = 2π(2

〈
u2

0

〉
)1/2/LΩ. This is

the ratio between the amplitude of oscillation of the flow at infinity and the wall
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wavelength. We write

φ = φ0 + ikReφ1 + . . . . (4.13)

The function φ0 obeys the linearized (4.10) with boundary conditions as in (4.11a,b)–
(4.12a,b) with φ replaced by φ0. The Fourier transform of φ0 is given by

φ̂0(z, ω) = (2)−1/2û0(ω)
α

ρ− k
(
e−ρz − e−kz

)
, (4.14)

with ρ ≡ (α2 + k2)1/2, and the principal branch of the square root is assumed
(Re{ρ} > 0). Recall that α = (1 + i sign(ω))(|ω|/2)1/2. The field φ0 describes vorticity
diffusion near the wavy wall caused by the uniform but oscillatory far-field flow.
Both the spatial and ensemble averages of this flow are zero. However, the flow
non-uniformity at O(1) induces mean flow at O(kRe), as it is readily apparent from
the equation for φ1,

(∂tD−D2)φ1 = (∂3
zψ0 − ∂zψ0D)φ0, (4.15)

with boundary conditions φ1 = 0, ∂zφ1 = 0 at z = 0,∞. The field φ1 describes
vorticity diffusion forced by the nonlinear interaction between φ0 and ψ0. As was
the case in § 3, we focus on the long-time limit of the ensemble average of (4.15),
φ

(s)
1 = limt→∞ 〈φ1〉 = χ+ c.c., where χ is given by

D2χ = − 1
2
G(z, β), (4.16)

with

G(z, β) =

∫ ∞
0

dω P (ω, β)Q(z, ω, β),

Q(z, ω, β) = α(ρ+ k)(2e−(α∗+ρ)z − e−(α∗+k)z − e−ρz).

 (4.17)

The corresponding boundary conditions are homogeneous, χ = 0, ∂zχ = 0 at z = 0,∞.
The solution is

χ(z, β) =

∫ ∞
0

dω P (ω, β)χ̂(z, ω),

χ̂(z, ω) = A1e
−ρz + A2e

−(α∗+ρ)z + A3e
−(α∗+k)z + (B1 + zB2)e

−kz,

 (4.18)

where the functions Ai, Bi depend on frequency and wavenumber,

A1 = D/α4, A2 = D/(2α2ρ2), A3 = −D/(α2(α∗ + 2k)2, D = α(ρ+ k)/2,

B1 = −(A1 + A2 + A3), B2 = (ρ− k)A1 + (ρ+ α∗ − k)A2 + α∗A3.

}
(4.19)

Therefore the stationary part of the averaged first-order stream function is given by

ψ
(s)
1 = ikReη̂ exp (ikx)(χ+ χ∗) + c.c. (4.20)

This solution shows that ψ(s)
1 has a phase advance of π/2 with respect to the wall

profile, and hence the flow in the vicinity of the boundary is directed from trough to
crest (∂2

z (χ + χ∗)|z=0 > 0). By shifting the coordinate system along the x-axis we can
change the phase of the wall profile so as to make it a simple cosine function. We
consider η(x) = cos (kx) in what follows.

Following Lyne (1971), we now proceed to study the limits of k large and small, while
kRe � 1. For k � 1 the wavelength of the boundary profile is much smaller than the
thickness of the viscous layer. In this case, a boundary layer appears of characteristic
thickness 1/k. Screening between regions producing positive and negative vorticity
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Figure 6. The lines indicate the values of z at which u
(s)
1 = 0 as a function of the boundary

wavenumber k, and for a range of values of β. At fixed k, the flow can have one (k > 0.23) or
two (0 < k 6 0.23) recirculating cells ahead of the boundary. Note that the location of the second
recirculating cell strongly depends on β.

occurs over a distance much smaller than the Stokes thickness based on the frequency
of oscillation. The net vorticity does not diffuse even to distances of z ∼ O(1), hence
giving rise to exponential decay with an exp(−kz) factor. The region in which the
stream function is not exponentially small depends on Z = kz. The explicit form of
ψ

(s)
1 may be obtained by direct expansion of the solution (4.20) in power series of

1/k, keeping Z fixed. The leading contribution to the steady part of the tangential
component of the velocity is given by

u
(s)
1 = k∂Zψ

(s)
1 ∼ − Re

24k2
sin (kx) e−ZZ(6− Z2). (4.21)

The boundary layer comprises two recirculating cells per wall period, located within
0 < z . 1/k. u(s)

1 changes sign at z = 61/2/k.
In the opposite limit of k � 1 one formally recovers the Schlichting problem in

that the characteristic longitudinal length scale is much larger than the Stokes layer
thickness. There is one fundamental difference, however, which can be seen from
the solution, (4.18). It has two contributions. The first one is proportional Ai, arises
from the particular solution, and serves to balance the non-homogeneity in (4.16).
This contribution decays within the Stokes layer. The second one is proportional to
Bi, and arises from the general solution of the homogeneous part of the equation.
This contribution decays over the stretched scale Z . It turns out that this second
contribution introduces an additional change of sign in the velocity when 0 < k 6 0.23,
hence allowing two or four recirculating cells per period ahead of the boundary. The
location of u(s)

1 = 0 as a function of k is shown figure 6. The location of the second
recirculating cell is entirely determined by that part of the solution that is proportional
to Bi, and occurs at z ∼ O(1/k)� 1.
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Figure 7. Tangential component of the mean stationary velocity as a function of z for k = 0.1 and
a range of values of β. The case β = ∞ corresponds to the analytic solution obtained by Lyne.
The other curves are the numerical solutions of the boundary value problem defined by (4.16) and
corresponding boundary conditions.

The steady velocity may be obtained by expanding the exact solution (4.18) in
power series of k, first keeping z fixed (inner solution, u(s)

1i ), and second keeping Z

fixed (outer solution u(s)
1o). To leading order, we find,

u
(s)
1i (z

′) ∼ −Rek2 sin (kx){[ 1
2
z′(sin (z′)− cos (z′)) + 2 sin (z′) + 1

2
cos (z′)]e−z

′

+ 1
4
e−2z′ − 3

4
}, z′ = z/21/2 ∼ O(1), (4.22)

u
(s)
1o(Z) ∼ −Rek2 sin (kx)[ 3

4
(Z − 1)e−Z ], Z ∼ O(1). (4.23)

The solution for the inner and outer steady velocities has already been obtained
by Lyne (1971) by a conformal transformation technique. We further note that the
inner and outer solutions can now be matched by requiring that u(s)

1i (∞) = u
(s)
1o(0) =

(3/4)Rek2 sin (kx). Hence it is possible to construct a uniformly valid solution by
adding the inner and outer solutions, and subtracting the first term of the inner
expansion of the outer solution. Our final result, valid in the deterministic limit, is

u
(s)
1c (z

′) ∼ −Rek2 sin (kx){[ 1
2
z′(sin(z′)− cos (z′)) + 2 sin (z′) + 1

2
cos (z′)]e−z

′

+ 1
4
e−2z′ + 3

4
(21/2kz′ − 1) exp (−21/2kz′)}. (4.24)

We next turn to a numerical study of the case of finite β. The boundary value
problem (4.16) has been solved numerically by using a multiple shooting method for
non-stiff and linear boundary value problems (Mattheij & Staarink 1984). The method
has the advantage that the necessary intermediate shooting points are determined by
the method itself, and that it can give the solution on a preset and non-uniform grid
of points. The code was tested on the analytically known solution of the deterministic
limit, (4.18) and (4.19). Our results are summarized in figures 6, 7 and 8.

Figure 6, already discussed above, shows that for fixed k, the mean stationary
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Figure 8. Tangential component of mean stationary velocity as a function of z for k = 10 and
a range of values of β. The case β = ∞ corresponds to the analytic solution obtained by Lyne.
The other curves are the numerical solutions of the boundary value problem defined by (4.16) and
corresponding boundary conditions.

velocity field may be composed of two or four recirculating cells per wall period
depending on β. The location of the first is largely independent of β, whereas
the deviation of the second relative to its location in the monochromatic limit is
proportional to β/π(1 + β2), the value of P (0, β).

Our results in the limit k � 1 are presented in figure 7, where profiles of tangential
component of the mean stationary velocity are plotted for k = 0.1 and different values
of β. At large β (close to the monochromatic limit) the flow is composed of four
recirculating cells per boundary period. Upon decreasing β, the location of the second
pair of recirculating cells moves to infinity (see also figure 6), so that beyond some
critical value of β, only two recirculating cells remain. Further decrease in β results
in the reappearance of a pair of recirculating cells at infinity, which then continue to
move towards decreasing z. The intensity of the recirculating modes does not change
monotonically with β as we further discuss below. We also note that for sufficiently
small k (a factor of ten or more smaller than the value of k = 0.1 shown in figure 7),
u

(s)
1 decays very slowly between z ∼ O(1) and z ∼ O(1/k). This rate of decay has the

same physical origin as the logarithmic divergence discussed in § 3. The velocity u(s)
1

finally crosses over to exponential decay for z > O(1/k).

In the opposite limit of k � 1 (figure 8 shows the case k = 10.0; note that u(s)
1 is

now normalized by Re/k2), the qualitative structure of the flow is largely independent
of β. The streaming flow has two recirculating cells per wall wavelength, and their
intensity increases monotonically with decreasing β.

The complex dependence of the flow on β and k can be qualitatively understood
from the interplay between the width of the power spectrum (given by 1/β), the
viscous damping of each elementary excitation that depends on its frequency, and
the penetration depth of the flow field which is primarily dictated by the boundary
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wavelength. For small k, large-frequency modes are damped close to the boundary
and do not penetrate much into the recirculating layers. Reducing β introduces high-
frequency components into the driving terms at first order, but they are dynamically
damped. At the same time, the power in the dominant frequency components (around
Ω) decreases. Overall, a decrease in β then leads to a decrease in recirculation strength.
As k increases, larger frequencies contribute to the flow over the entire range of the
recirculating cells. Decreasing β decreases the strength of the dominant components,
but increases the range of high frequencies that can contribute to the flow. From (4.16)
one can show that the driving contribution from higher frequencies which is contained
in Q increases faster with frequency than the decreasing weight given to them by the
power spectrum P (ω, β). Consequently, decreasing β (which amounts to moving
towards the white noise limit) leads to increasing amplitude of the recirculation.

In summary, for any value of β, finite or infinite, the vorticity produced by vibration
of the wavy boundary does not penetrate into the bulk farther than a distance of
order of the wavelength of the boundary. However, there are qualitative differences
with the deterministic limit in the character of the flow within that layer. In particular,
the structure and the intensity of the stationary secondary flow strongly depend on β.

5. Summary
We have addressed the flow induced by a randomly vibrating solid boundary

in an otherwise quiescent fluid. This analysis has been motivated by the random
residual acceleration field in which microgravity experiments are conducted. The
salient features of the flow are summarized below.

When the solid boundary is planar, the flow field averages to zero (the average
velocity of the boundary has been taken to be zero in all cases investigated), but
its variance decays algebraically with distance away from the wall. This dependence
follows from a non-vanishing power spectrum of the boundary velocity at zero
frequency. Introducing a low-frequency cut-off in the power spectrum leads back to
the classical exponential decay, with a rate that is determined by the cut-off frequency,
(2.19). The amplitude of the decaying variance depends explicitly on the correlation
time of the boundary velocity, β = Ωτ, where Ω is the dominant angular frequency
of the power spectrum of the boundary velocity, and τ is inverse spectral width (τ is
the correlation time of the boundary velocity).

If the solid boundary is weakly curved, steady streaming is generated in analogy
with the classical analysis of Schlichting. The stationary part of the ensemble average
of the secondary velocity is non-zero, even though the boundary velocity averages
to zero. In this case, we find that the leading contribution to the average stationary
velocity diverges logarithmically with distance away from the boundary. In analogy
to the planar case, the introduction of a low-frequency cut-off in the power spectrum
of the boundary velocity changes the asymptotic behaviour qualitatively. The average
stationary velocity asymptotes now to a constant, given by (3.18). The asymptotic
velocity explicitly depends on β and logarithmically on the cut-off frequency. This
asymptotic behaviour is not reached until a length scale of the order of the Stokes
layer thickness that is based on the cut-off frequency.

We have finally analysed the case of a periodically modulated solid boundary
in the limit in which the scale of the wall modulation is small compared to the
thickness of the Stokes layer, and also when the spatial amplitude of the boundary
oscillation is small compared with the wavelength of the wall profile. Cancellation
of vorticity production over the wall boundary leads to exponential decay of the
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fluid velocity away from the boundary, with a decay length which is proportional
to the wall wavelength, even if the zero frequency value of the power spectrum of
the boundary velocity is non-zero. If the boundary wavelength is much larger than
the Stokes layer thickness, we find steady streaming in secondary flow with two or
four recirculating cells per wall period depending on β. On the other hand, if the
wavelength is much smaller than the Stokes layer thickness, only two recirculating
cells are formed regardless of the value of β. Somewhat unexpectedly, the intensity
of the recirculation can both increase or decrease with β.
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Division of the NASA under contract No. NAG3-1885, and also in part by the
Supercomputer Computations Research Institute, which is partially funded by the
US Department of Energy, contract No. DE-FC05-85ER25000.

Appendix. Transient layer formation
In the two limiting cases of white and monochromatic noise, it is possible to find an

analytic solution for the transient flow induced by a vibrating planar boundary in an
otherwise quiescent fluid. The retarded, infinite-space Green’s function for equation
(2.1), with boundary conditions (2.2), is

G(z, t|z′, t′) =
1

(4πν(t− t′))1/2
[exp [−(z − z′)2/4ν(t− t′)]
− exp [−(z + z′)2/4ν(t− t′)]], t > t′, (A 1)

and G(z, t|z′, t′) = 0 for t < t′. If the fluid is initially quiescent, u(z, 0) = 0, we find

u(z, t) = ν

∫ t

0

dt′ u0(t
′) (∂z′G)z′=0 . (A 2)

If u0(t) is a Gaussian, white noise process, the ensemble average of (A 2) yields
〈u(z, t)〉 = 0. The corresponding equation for the variance reads〈

u2(z, t)
〉

= 2Dν2

∫ t

0

dt′ [(∂z′G)z′=0]
2 =

2Dν

πz2

(
1 +

z2

2νt

)
exp (−z2/2νt). (A 3)

The variance of the induced fluid velocity propagates into the fluid diffusively. Satu-
ration occurs for t� z2/2ν, at which point the variance does not decay exponentially
far away from the wall, but rather as a power law

〈
u2(z,∞)

〉
= 2Dν/πz2. The diver-

gence as z → 0 is a spurious consequence of the white noise limit considered. See
(2.15) for the limiting behaviour at finite correlation time of the noise.

Consider now the opposite limit of monochromatic noise with correlation function

〈u0(t)u0(t
′)〉 =

〈
u2

0

〉
cos [Ω(t− t′)]. (A 4)

Now using (A 2) and (A 4) we find (Carslaw & Jaeger 1959)〈
u2(z, t)

〉
2
〈
u2

0

〉 =
2

π

∫ ∞
κ

dσ e−σ
2

∫ ∞
κ

dµ e−µ
2

cos

[
z2

2δ2
s

(
1

µ2
− 1

σ2

)]
, (A 5)

with κ = z/(4νt)1/2. A closed form solution can only be obtained for long times. We
find〈

u2(z, t)
〉

2
〈
u2

0

〉 =
exp (−2z/δs)

2
+

2κ3δ2
s

π1/2z2
exp (−z/δs) sin(Ω t− z/δs) + O(κ5(t)). (A 6)
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At long times, the variance propagates into the bulk with phase velocity (2νΩ)1/2,
while its amplitude decays exponentially in space over the scale of the Stokes layer,
and as t−3/2 in time. In summary, the flow created by the vibration of the boundary
propagates diffusively for white noise (z2 ∝ 2νt), and as a power law (z2 ∝ πνΩ2t3)
in the monochromatic limit.
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